Exploring new pE_6SSM signatures at LHC Where is the LHC Higgs in E_6 ? Where is the E_6 Z' at LHC?

Patrik Svantesson

University of Southampton P.Svantesson@soton.ac.uk

Projects in progress with: Z': Sasha, Steve h: Sasha, Matt, Marco et al.

Thursday Seminar

Southampton

Jan 17, 2013

Outline

MSSM

- μ -problem
- E₆SSM
 - More particles and more parameters

Where is the E₆ Z' at LHC?

- A light Z' motivated by reduced fine-tuning
- Experimental limits

3 Where is the LHC Higgs in E₆?

- The mass
- The couplings

Conclusions

SM

----H

MSSM

MSSM superpotential:

$$W = y_u \bar{u} Q H_u + y_d \bar{d} Q H_d + y_e \bar{e} L H_d + \mu H_u H_d$$

Minimization of Higgs potential gives:

$$rac{m_Z^2}{2} = -|\mu^2| + rac{m_{H_d}^2 - m_{H_u}^2 an^2 eta}{ an^2 eta - 1}$$

where m_{H_d} and m_{H_u} are soft SUSY breaking Higgs mass parameters.

- We expect $\mu \sim m_{\sf soft} \sim {\cal O}({\sf TeV})$
- $\bullet\,$ But the $\mu\text{-term}$ is SUSY preserving so why

$$\mu \sim m_{
m soft}$$
 rather than $\mu \sim M_{PI}$?

A common way to solve the μ problem is to introduce a scalar, S.

$$\lambda SH_uH_d$$
 and $\langle S
angle = rac{s}{\sqrt{2}} \sim m_{
m soft} \sim 1 {
m TeV}$ \Rightarrow $\mu_{
m eff} = rac{\lambda s}{\sqrt{2}}$

But you have introduced a new global U(1) symmetry and broken it, resulting in a massless axion, which we haven't observed.

- **NMSSM:** A cubic term, S^3 , is also added, breaking the U(1) down to a discrete Z_3 . This could lead to cosmological domain walls and overclosure of the Universe.
- **USSM:** The U(1) is gauged and a massive Z' appear. However, the theory is not anomaly free.
- E_6SSM : The gauged U(1) is a remnant of a broken E_6 . Anomaly cancellation is assured by having particles in complete 27s of E_6 at the TeV scale.

E_6SSM

Patrik Svantesson (Uni. of Southampton)

pE₆SSM at the LHC

Field	Boson	Fermion	<i>SU</i> (3)	<i>SU</i> (2)	U(1)	U(1)']
Chiral	Spin 0	Spin 1/2]
Q^i	$\begin{pmatrix} \tilde{u}_L \\ \tilde{d}_I \end{pmatrix}^i$	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}^i$	3	2	$\frac{1}{6}$	1	
\bar{u}^i	\tilde{u}_R^{*i}	$u_R^{\dagger i}$	3	1	$-\frac{2}{3}$	1	
d'	\tilde{d}_R^{*i}	$d_R^{\dagger i}$	3	1	$\frac{1}{3}$	2	
Li	$\begin{pmatrix} \tilde{\nu}_L \\ \tilde{e}_L \end{pmatrix}'$	$\begin{pmatrix} \nu_L \\ e_L \end{pmatrix}'$	1	2	$-\frac{1}{2}$	2	
ē ⁱ	\tilde{e}_{R}^{*i}	$e_R^{\dagger i}$	1	1	1	1	
N'	\tilde{N}_{R}^{*i}	$N_R^{\dagger i}$	1	1	0	0	
Si	\tilde{S}^{*i}	$S^{\dagger i}$	1	1	0	5	
H_u^i	$\begin{pmatrix} H_u^+ \\ H_u^0 \end{pmatrix}^i$	$\begin{pmatrix} ilde{H}^+_u \\ ilde{H}^0_u \end{pmatrix}'$	1	2	$\frac{1}{2}$	-2	
H_d^i	$ \begin{pmatrix} H_d^0 \\ H_d^- \end{pmatrix}^i $	$ \begin{pmatrix} \tilde{H}_d^0 \\ \tilde{H}_d^- \end{pmatrix}^i $	1	2	$-\frac{1}{2}$	-3	
D^i	\tilde{D}^{*i}	$D^{\dagger i}$	3	1	$-\frac{1}{3}$	-2	
\bar{D}^i	$\tilde{\bar{D}}^{*i}$	$ar{D}^{\dagger i}$	3	1	$\frac{1}{3}$	-3	J
Gauge	Spin 1	Spin 1/2	-				ļ
g	g	, ĝ	8		0	0	
W	$ W^{\pm,0}$	$W^{\pm,0}$	1	3	0	0	
B	B	Ď	1	1	0	0	
B'	B'	\tilde{B}'	1	1	0	0	

E₆SSM

New features:

- Gauge group: U(1)'
- Fields:
 N, *S*, *D*, *D*, *B'*

• Families in Higgs sector

 pE_6SSM involves

• More particles

- More particles
- More VEVs

- More particles
- More VEVs
- More terms

- More particles
- More VEVs
- More terms
- More couplings

- More particles
- More VEVs
- More terms
- More couplings
- More computing hours

- More particles
- More VEVs
- More terms
- More couplings
- More computing hours
- More (broken) symmetry

$\mathsf{pE}_6\mathsf{SSM}$ involves

- More particles
- More VEVs
- More terms
- More couplings
- More computing hours
- More (broken) symmetry
- More interactions

$\mathsf{pE}_6\mathsf{SSM}$ involves

- More particles
- More VEVs
- More terms
- More couplings
- More computing hours
- More (broken) symmetry
- More interactions
- More constraints

- More particles
- More VEVs
- More terms
- More couplings
- More computing hours
- More (broken) symmetry
- More interactions
- More constraints
- More interesting signatures

- More particles
- More VEVs
- More terms
- More couplings
- More computing hours
- More (broken) symmetry
- More interactions
- More constraints
- More interesting signatures
- More fun!

- To emphasize that we are not studying the GUT constrained E_6SSM (cE_6SSM) I will dentote this unconstrained, electro-weak scaled model as **the phenomenological** E_6SSM (pE_6SSM) in analogy with the pMSSM
 - We are using a CalcHEP model which is available on HEPMDB
 - Electro-weak scale couplings and soft SUSY breaking parameters are input parameters

Where is the $E_6 Z'$ at the LHC?

Collaborators: Sasha and Steve

Why are we interested in Z's?

- A lot of models predict an extra U'(1)
 - Extra dimensions, Technicolour, GUTs...
- Z's may provide clear dilepton signatures
- Z's are typically expected to be light (within reach of the LHC)
- But no bumps so far...

The Higgs potential minimisation condition

- *M_{Z'}* is a new independent source of fine-tuning
- In general, if the Higgs states carry U(1)' charges the Z' mass will appear in the Higgs potential minimization conditions

Fine-tuning

Defining fine-tuning with respect to a model parameter α as the ratio of relative change of M_7^2 to the relative change of α

$$\Delta_{\alpha} = \frac{\frac{\Delta M_Z^2}{M_Z^2}}{\frac{\Delta \alpha}{\alpha}} = \frac{\alpha}{M_Z^2} \frac{\Delta M_Z^2}{\Delta \alpha} \to \frac{\alpha}{M_Z^2} \frac{\partial M_Z^2}{\partial \alpha}$$

Experimental limits on cross sections

- Exclusions are typically made on the cross section $\sigma_{Z^{prime}}$ (or its ratio, R_{σ} to the Z cross section)
- We are interested in the limits on the coupling g'

Experimental limits in the $M_{Z'} - g'$ plane

 $pp \to Z' \to ll$ For GUT predicted 10^{2} value of g' CMS limit is 10^{0} $M_{Z'} \gtrsim 2 TeV$ on Te 10^{-2} • Low-mass Z' is allowed 10^{-1} 10⁻⁴ Ъ if the coupling g' is reduced 10^{-6} 10^{-8} 1/100.5 12 10^{-10} 10^{-3} 13.7 3500 500 1000 15002000 25003000 $M_{Z'}$ [GeV]

$$M_{Z'}^2 = g_1'^2 v^2 \left(\tilde{Q}_1^2 \cos^2 \beta + \tilde{Q}_2^2 \sin^2 \beta \right) + g_1'^2 \tilde{Q}_5^2 s^2 \approx g_1'^2 \tilde{Q}_5^2 s^2$$

1/15

 ~ 0.2

 ~ 1

 ~ 8

Summary of light (E_6) Z'

- Not excluded by LHC data
- We should remember the weak coupling regime as well as the large mass regime
- Motivated by less fine-tuning
- We should remember the other sources of fine-tuning as well. When decreasing the Z' mass limit by decreasing the coupling we are pushing up the singlet VEV which appears in

$$\mu_{\rm eff} = \frac{\lambda s}{\sqrt{2}}.$$

ightarrow we have to decrease λ together with g'.

We are investigating what other implications this scenario has...

Where is the LHC Higgs in the E_6SSM parameter space?

Collaborators: Sasha, Matt, Marco[Dresden] et al.

The LHC boson

- A new boson is discovered
- The measurements are so far in good agreement with the SM
- Is statistics or BSM phyics the cause for the $\gamma\gamma$ excess?
- We are investigating how and where the pE_6SSM can accommodate the measured mass and couplings

Patrik Svantesson (Uni. of Southampton)

The E₆SSM Higgs mass

Important tree-level contributions to the lightest Higgs mass are

$$M_h^2 = \frac{\lambda^2 v^2}{2} \sin^2 2\beta + M_Z^2 \cos^2 2\beta + g' v^2 (Q_1 \cos^2 \beta + Q_2 \sin^2 \beta)^2 + \dots$$

In our choice of parameterisation the Higgs mass is a function of 6 parameters and take into account two-loop effects

$$M_h = M_h(M_A, \tan \beta, M_{\tilde{q}}, A_t, s, \lambda)$$

- M_A is the CP-odd Higgs mass \leftrightarrow soft A_λ in the SH_uH_d coupling
- $\tan \beta$ is the ratio of Higgs VEVs
- $M_{\tilde{q}}$ is a common soft squark mass scale
- A_t is the soft parameter in the stop coupling $\tilde{t}\tilde{t}H_u \leftrightarrow$ stop mixing X_t
- s is the VEV of the singlet field S
- λ is the coupling in SH_uH_d

Where to find $M_h \approx 125$ GeV

- Allowed regions were found by a broad scan parameter min max tan β 1.1 20 01 0.9 λ -5 TeV 5 TeV At 1 TeV 10 TeV s 1 TeV 5 TeV M_A 1 TeV 10 TeV Mã
- Complicated
 - parameter space but some correlations can be seen

$$M_h^2 = \frac{\lambda^2 v^2}{2} \sin^2 2\beta + M_Z^2 \cos^2 2\beta + g' v^2 (Q_1 \cos^2 \beta + Q_2 \sin^2 \beta)^2 + \dots$$

Where to find $M_h \approx 125$ GeV

Region X: $\tan \beta > 4$ and $|\lambda| < 0.4$ 20147 15 144 141 $\tan_{\bar{B}}\beta$ $\tan_{\scriptscriptstyle \overline{u}}\beta$ 138 🧝 135 132 5 129 1260 -1.0 -10 0.0 1.0 λ λ $M_{h}^{2} = \frac{\chi^{2} v^{2}}{2} \sin^{2} 2\beta + M_{Z}^{2} \cos^{2} 2\beta + g' v^{2} (Q_{1} \cos^{2} \beta + Q_{2} \sin^{2} \beta)^{2} + \dots$ Region Y: tan β < 4 and $|\lambda|$ > 0.4

Where to find $M_h \approx 125$ GeV

- Region X: tan $\beta > 4$ and $|\lambda| < 0.4$
 - For $|\lambda| \gtrsim 0.4$, λ contributes positively to the Higgs mass for tan $\beta \lesssim 4$ and negatively for tan $\beta \gtrsim 4$
 - For $|\lambda| \leq 0.4$, a large Higgs mass rely on large tan β to maximise the contribution proportional to M_{7} (the $U(1)_{Y}$ and $U(1)_{N}$ D-terms)

$$I_h^2 \neq \frac{\sqrt{v}}{2} \sin^2 2\beta + M_Z^2 \cos^2 2\beta + g' v^2 (Q_1 \cos^2 \beta + Q_2 \sin^2 \beta)^2 + .$$

Region Y: tan $\beta < 4$ and $|\lambda| > 0.4$

• The found correlations constrain the two regions further:

	Х	Y
aneta	> 4	< 4
$ \lambda $	< 0.4	> 0.4
$ A_t $	> 2 TeV	-
S	-	< 7.5 TeV
M_A	-	> 3 TeV
$M_{\tilde{q}}$	< 3.5 TeV	-

• We perform separate scans for these regions when considering the constraints from the Higgs coupling measurements

• The leading contributions to the Hggand $H\gamma\gamma$ couplings appear at loop level

- E_6SSM introduces a lot of new particles to these loops
 - Hgg: squarks, diquarks, diquarkinos
 - $H\gamma\gamma$: squarks, sleptons, diquarks, diquarkinos, charginos, charged Higgses
- More parameters have to be added to the scan

		min	max
SDD coupling	$\kappa = \kappa_{i=1,2,3}$	0.1	1
soft scalar <i>SDD</i> coupling	A _κ	-5 TeV	5 TeV
soft diquark mass	M _{DQ}	2 TeV	10 TeV
gaugino (wino) mass	M2	0.1 TeV	1 TeV
soft inert Higgs masses	$M_{H_{\alpha}}$	0.5 TeV	5 TeV

Excluding points with a χ^2 function

• We define a χ^2 function with three terms corresponding to the $\gamma\gamma,$ ZZ and WW channel

$$\chi^2 = \sum_{i=Z,W,\gamma} \frac{(\mu'_i - \mu_i)^2}{\sigma_i^2}$$

- The best fit for the signal strengths μ_i and their errors σ_i are taken from ATLAS
- We then calculate

$$\mu_i' = \frac{\Gamma_h}{\Gamma_h^{\rm SM}} \frac{\mathrm{Br}_g}{\mathrm{Br}_g^{\rm SM}} \frac{\mathrm{Br}_i}{\mathrm{Br}_i^{\rm SM}}$$

for each scanned point and rule it out if χ^2 >6, which corresponds to 95% CL in this case

gg and $\gamma\gamma$ couplings

- No exclusions are made from the plots below
- These plots indicates how well our approximation of the χ^2 function agrees with ATLAS (in the case of all other couplings =SM)

gg and $\gamma\gamma$ couplings and $M_S = M_{\tilde{q}} = M_{\tilde{l}}$

- Light sfermions $(M_S \lesssim 1 \text{ TeV})$ are needed to give large $\gamma\gamma$ enhancements
- Light squarks $(M_{\tilde{q}} \lesssim 2 \text{ TeV})$ are needed to cause large gg deviations

By requiring $\chi^2(\mu'_{\gamma}, \mu'_{W}, \mu'_{Z}) > 6$ for excluded points we can make projection of excluded areas in planes of input parameters:

More examples from Region X

- We may see some slight preference of
 - smaller s
 - $\bullet \ \, {\rm larger} \ \, {\rm tan} \ \, \beta$
- Need more data to place strong constraints from couplings measurements

- The mass measurement alone places quite strict and interesting constraints on the parameter space
- The couplings place some extra constraints but more data is needed
- We are working on including the $\tau\tau$ and bb channels, which are important measurements, especially for large $\tan\beta$
- For most points the Higgs appear to be very MSSM and SM like

- In the absence of any hints of gluinos (or squarks) and recalling that these are more difficult channels in the E_6SSM than in the MSSM we might see the hints of this model first in Z' searches and Higgs measurements.
- A light, weakly coupled Z' is motivated by fine-tuning arguments and may still be found among the backgrounds at the LHC
- The measurements of the Higgs mass and couplings can provide hints of BSM physics. We are defining the regions of parameter space which can accommodate the measured signal strengths.
- A rigorous combination of Z' and Higgs constraints would be powerful and will be my next step