Exploring new pE₆SSM signatures at LHC

Where is the LHC Higgs in E_6 ? Where is the E_6 Z' at LHC?

Patrik Svantesson

University of Southampton *P.Svantesson@soton.ac.uk*

Projects in progress with:

Z': Sasha, Steve

h: Sasha, Matt, Marco et al.

Thursday Seminar

Jan 17, 2013

Outline

- The Model
 - MSSM
 - \bullet μ -problem
 - E₆SSM
 - More particles and more parameters
- 2 Where is the E_6 Z' at LHC?
 - A light Z' motivated by reduced fine-tuning
 - Experimental limits
- 3 Where is the LHC Higgs in E_6 ?
 - The mass
 - The couplings
- 4 Conclusions

SM

MSSM

The μ -problem

MSSM superpotential:

$$W = y_u \bar{u} Q H_u + y_d \bar{d} Q H_d + y_e \bar{e} L H_d + \mu H_u H_d$$

Minimization of Higgs potential gives:

$$rac{m_Z^2}{2} = -|\mu^2| + rac{m_{H_d}^2 - m_{H_u}^2 an^2 eta}{ an^2 eta - 1}$$

where m_{H_d} and m_{H_u} are soft SUSY breaking Higgs mass parameters.

- ullet We expect $\mu \sim m_{\mathsf{soft}} \sim \mathcal{O}(\mathsf{TeV})$
- ullet But the μ -term is SUSY preserving so why

$$\mu \sim m_{
m soft}$$
 rather than $\mu \sim M_{Pl}$?

Solving the μ -problem

A common way to solve the μ problem is to introduce a scalar, S.

$$\lambda S H_u H_d$$
 and $\langle S
angle = rac{s}{\sqrt{2}} \sim m_{
m soft} \sim 1 {
m TeV}$ \Rightarrow $\mu_{
m eff} = rac{\lambda s}{\sqrt{2}}$

But you have introduced a new global U(1) symmetry and broken it, resulting in a massless axion, which we haven't observed.

- **NMSSM:** A cubic term, S^3 , is also added, breaking the U(1) down to a discrete Z_3 . This could lead to cosmological domain walls and overclosure of the Universe.
- **USSM:** The U(1) is gauged and a massive Z' appear. However, the theory is not anomaly free.
- **E**₆**SSM**: The gauged U(1) is a remnant of a broken E_6 . Anomaly cancellation is assured by having particles in complete **27**s of E_6 at the TeV scale.

E₆SSM

- String theory motivated model
- One extra surviving U(1)'
- Extra particles from complete 27s of E_6

Field	Boson	Fermion	<i>SU</i> (3)	<i>SU</i> (2)	U(1)	U(1)'
Chiral	Spin 0	Spin 1/2				
Q^{i}	$egin{pmatrix} \left(egin{array}{c} \widetilde{u}_L \ \widetilde{d}_L \ \end{array} ight)^i \ \widetilde{u}_R^{*i} \ \widetilde{d}_R^{*i} \ \left(egin{array}{c} \widetilde{ u}_L \ \widetilde{e}_L \ \end{array} ight)^i \end{array}$	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}^i$	3	2	1/6	1
$ar{u}^i \ ar{d}^i$	ũ _R *i	$u_R^{\dagger i}$	3 3	1	$-\frac{2}{3}$	1
\bar{d}^i	\tilde{d}_R^{*i} .	$d_R^{\dagger i}$.	3	1	$-\frac{2}{3}$ $\frac{1}{3}$	2
L ⁱ	$\begin{pmatrix} ilde{ u}_L \\ ilde{e}_L \end{pmatrix}'$	$\begin{pmatrix} \nu_L \\ e_L \end{pmatrix}'$	1	2	$-\frac{1}{2}$	2
ē ⁱ N ⁱ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$e_R^{\dagger i}$	1	1	1	1
\bar{N}^i	\tilde{N}_{R}^{*i}	$N_R^{\dagger i}$	1	1	0	0
S ⁱ	Ŝ*i	$e_R^{\dagger\prime} \ N_R^{\dagger i} \ S^{\dagger i}$.	1	1	0	5
H_u^i	$\begin{pmatrix} H_u^+ \\ H_u^0 \end{pmatrix}^i$	$egin{pmatrix} ilde{H}_u^+ \ ilde{H}_u^0 \end{pmatrix}'$	1	2	$\frac{1}{2}$	-2
H_d^i	$\left(\begin{array}{c} H_d^0 \\ H_d^- \end{array} \right)^i$	$\begin{pmatrix} \tilde{\mathcal{H}}_d^0 \\ \tilde{\mathcal{H}}_d^- \end{pmatrix}^i$	1	2	$-\frac{1}{2}$	-3
D^i	\tilde{D}^{*i}	$D^{\dagger i}$	3	1	$-\frac{1}{3}$	-2 -3
\bar{D}^i	$\tilde{\bar{D}}^{*i}$	$ar{D}^{\dagger i}$	3	1	$\frac{1}{3}$	-3
Gauge	Spin 1	Spin 1/2				
g	g	ĝ	8	1	0	0
g W	$W^{\pm,0}$	$ ilde{W}^{\pm,0} $	1	3	0	0
В	В	$ ilde{B}$	1	1	0	0
В В'	g W ^{±,0} B B'	Spin $1/2$ \tilde{g} $\tilde{W}^{\pm,0}$ \tilde{B} \tilde{B}'	1	1 1	0	0

E₆SSM

New features:

- Gauge group: U(1)'
- Fields:
 N, S, D, D, B'
- Families in Higgs sector

pE₆SSM involves

• More particles

- More particles
- More VEVs

- More particles
- More VEVs
- More terms

- More particles
- More VEVs
- More terms
- More couplings

- More particles
- More VEVs
- More terms
- More couplings
- More computing hours

pE_6SSM involves

- More particles
- More VEVs
- More terms
- More couplings
- More computing hours
- More (broken) symmetry

pE_6SSM involves

- More particles
- More VEVs
- More terms
- More couplings
- More computing hours
- More (broken) symmetry
- More interactions

pE_6SSM involves

- More particles
- More VEVs
- More terms
- More couplings
- More computing hours
- More (broken) symmetry
- More interactions
- More constraints

- More particles
- More VEVs
- More terms
- More couplings
- More computing hours
- More (broken) symmetry
- More interactions
- More constraints
- More interesting signatures

- More particles
- More VEVs
- More terms
- More couplings
- More computing hours
- More (broken) symmetry
- More interactions
- More constraints
- More interesting signatures
- More fun!

Why the p?

- To emphasize that we are not studying the GUT constrained E_6SSM (c E_6SSM) I will dentote this unconstrained, electro-weak scaled model as **the phenomenological E_6SSM (pE_6SSM)** in analogy with the pMSSM
 - We are using a CalcHEP model which is available on HEPMDB
 - Electro-weak scale couplings and soft SUSY breaking parameters are input parameters

Where is the E_6 Z' at the LHC?

Collaborators: Sasha and Steve

Why are we interested in Z's?

- A lot of models predict an extra U'(1)
 - Extra dimensions, Technicolour, GUTs...
- Z's may provide clear dilepton signatures
- Z's are typically expected to be light (within reach of the LHC)
- But no bumps so far...

The Higgs potential minimisation condition

$$\frac{\mathit{M}_{Z}^{2}}{2} = -|\mu|^{2} \quad + \frac{\mathit{m}_{\mathit{H}_{d}}^{2} - \mathit{m}_{\mathit{H}_{u}}^{2} \tan^{2}\beta}{\tan^{2}\beta - 1}$$

$$\Downarrow$$

$$\left(1 - \frac{g_1'^2}{\bar{g}^2} Q(\tan\beta)\right) \frac{M_Z^2}{2} = -|\mu_{\rm eff}|^2 + \frac{m_{H_d}^2 - m_{H_u}^2 \tan^2\beta}{\tan^2\beta - 1} + \frac{M_{Z'}^2}{2} R(\tan\beta)$$

- M_{Z'} is a new independent source of fine-tuning
- In general, if the Higgs states carry U(1)' charges the Z' mass will appear in the Higgs potential minimization conditions

Fine-tuning

Defining fine-tuning with respect to a model parameter α as the ratio of relative change of M_Z^2 to the relative change of α

$$\Delta_{\alpha} = \frac{\frac{\Delta M_Z^2}{M_Z^2}}{\frac{\Delta \alpha}{\alpha}} = \frac{\alpha}{M_Z^2} \frac{\Delta M_Z^2}{\Delta \alpha} \rightarrow \frac{\alpha}{M_Z^2} \frac{\partial M_Z^2}{\partial \alpha}$$

- We consider $\alpha = M_{Z'}^2$
- The overall fine-tuning is the maximum of all sources

$$\Delta = \max_{\alpha}(\Delta_{\alpha})$$

Experimental limits on cross sections

- Exclusions are typically made on the cross section $\sigma_{Z^{prime}}$ (or its ratio, R_{σ} to the Z cross section)
- We are interested in the limits on the coupling g'

Experimental limits in the $M_{Z'} - g'$ plane

 For GUT predicted value of g' CMS limit is

$$M_{Z'} \gtrsim 2 \, TeV$$

 Low-mass Z' is allowed if the coupling g' is reduced

$$M_{Z'}^2 = g_1'^2 v^2 \Big(\tilde{Q}_1^2 \cos^2 \beta + \tilde{Q}_2^2 \sin^2 \beta \Big) + g_1'^2 \tilde{Q}_S^2 s^2 pprox g_1'^2 \tilde{Q}_S^2 s^2$$

Summary of light (E_6) Z'

- Not excluded by LHC data
- We should remember the weak coupling regime as well as the large mass regime
- Motivated by less fine-tuning
- We should remember the other sources of fine-tuning as well. When decreasing the Z^\prime mass limit by decreasing the coupling we are pushing up the singlet VEV which appears in

$$\mu_{\text{eff}} = \frac{\lambda s}{\sqrt{2}}.$$

 \rightarrow we have to decrease λ together with g'. We are investigating what other implications this scenario has. . .

Where is the LHC Higgs in the E_6SSM parameter space?

Collaborators: Sasha, Matt, Marco[Dresden] et al.

The LHC boson

- A new boson is discovered
- The measurements are so far in good agreement with the SM
- ullet Is statistics or BSM phyics the cause for the $\gamma\gamma$ excess?
- ullet We are investigating how and where the pE₆SSM can accommodate the measured mass and couplings

The E₆SSM Higgs mass

Important tree-level contributions to the lightest Higgs mass are

$$M_h^2 = \frac{\lambda^2 v^2}{2} \sin^2 2\beta + M_Z^2 \cos^2 2\beta + g' v^2 (Q_1 \cos^2 \beta + Q_2 \sin^2 \beta)^2 + \dots$$

In our choice of parameterisation the Higgs mass is a function of 6 parameters and take into account two-loop effects

$$M_h = M_h(M_A, \tan \beta, M_{\tilde{q}}, A_t, s, \lambda)$$

- M_A is the CP-odd Higgs mass \leftrightarrow soft A_λ in the SH_uH_d coupling
- ullet tan eta is the ratio of Higgs VEVs
- ullet $M_{ ilde{q}}$ is a common soft squark mass scale
- ullet A_t is the soft parameter in the stop coupling $ilde{t} ilde{t} H_u \leftrightarrow$ stop mixing X_t
- s is the VEV of the singlet field S
- λ is the coupling in SH_uH_d

 Allowed regions were found by a broad scan

parameter	min	max
$tan \beta$	1.1	20
λ	0.1	0.9
A_t	-5 TeV	5 TeV
s	1 TeV	10 TeV
M_A	1 TeV	5 TeV
$M_{\tilde{a}}$	1 TeV	10 TeV

 Complicated parameter space but some correlations can be seen

$$M_h^2 = \frac{\lambda^2 v^2}{2} \sin^2 2\beta + M_Z^2 \cos^2 2\beta + g' v^2 (Q_1 \cos^2 \beta + Q_2 \sin^2 \beta)^2 + \dots$$

Region Y: $\tan \beta < 4$ and $|\lambda| > 0.4$

Region Y: $\tan \beta < 4$ and $|\lambda| > 0.4$

The two allowed regions

• The found correlations constrain the two regions further:

 We perform separate scans for these regions when considering the constraints from the Higgs coupling measurements

The E₆SSM Higgs couplings

The leading contributions to the Hgg and $H\gamma\gamma$ couplings appear at loop level

- E₆SSM introduces a lot of new particles to these loops
 - Hgg: squarks, diquarks, diquarkinos
 - $H\gamma\gamma$: squarks, sleptons, diquarks, diquarkinos, charginos, charged Higgses
- More parameters have to be added to the scan

		min	max
SDD coupling	$\kappa = \kappa_{i=1,2,3}$	0.1	1
soft scalar $SD\bar{D}$ coupling	A_{κ}	-5 TeV	5 TeV
soft diquark mass	M_{DQ}	2 TeV	10 TeV
gaugino (wino) mass	M_2	0.1 TeV	1 TeV
soft inert Higgs masses	$M_{H_{\alpha}}$	0.5 TeV	5 TeV

Excluding points with a χ^2 function

• We define a χ^2 function with three terms corresponding to the $\gamma\gamma$, ZZ and WW channel

$$\chi^2 = \sum_{i=Z,W,\gamma} \frac{(\mu_i' - \mu_i)^2}{\sigma_i^2}$$

- The best fit for the signal strengths μ_i and their errors σ_i are taken from ATLAS
- We then calculate

$$\mu_i' = \frac{\Gamma_h}{\Gamma_h^{\text{SM}}} \frac{\text{Br}_g}{\text{Br}_g^{\text{SM}}} \frac{\text{Br}_i}{\text{Br}_i^{\text{SM}}}$$

for each scanned point and rule it out if $\chi^2 > 6$, which corresponds to 95% CL in this case

\overline{gg} and $\gamma\gamma$ couplings

- No exclusions are made from the plots below
- These plots indicates how well our approximation of the χ^2 function agrees with ATLAS (in the case of all other couplings =SM)

gg and $\gamma\gamma$ couplings and $M_{\mathcal{S}}=M_{ ilde{q}}=M_{ ilde{l}}$

- Light sfermions $(M_S \lesssim 1 \text{ TeV})$ are needed to give large $\gamma\gamma$ enhancements
- Light squarks $(M_{\tilde{q}} \lesssim 2 \text{ TeV})$ are needed to cause large gg deviations

Exclusions in the input parameter space

By requiring $\chi^2(\mu_\gamma', \mu_W', \mu_Z') > 6$ for excluded points we can make projection of excluded areas in planes of input parameters:

For example $M_{\tilde{q}} - \lambda$ in region X:

The coupling measurements push squark masses up and the coupling λ down

$$hL=\lambda \\ MSq=M_{\tilde{q}}$$

More examples from Region X

- We may see some slight preference of
 - smaller s
 - $\bullet \ \ \mathsf{larger} \ \mathsf{tan} \ \beta$
- Need more data to place strong constraints from couplings measurements

Summary of the Higgs measurements

- The mass measurement alone places quite strict and interesting constraints on the parameter space
- The couplings place some extra constraints but more data is needed
- We are working on including the $\tau\tau$ and bb channels, which are important measurements, especially for large $\tan\beta$
- For most points the Higgs appear to be very MSSM and SM like

Conclusions¹

- In the absence of any hints of gluinos (or squarks) and recalling that these are more difficult channels in the E_6SSM than in the MSSM we might see the hints of this model first in Z^\prime searches and Higgs measurements.
- ullet A light, weakly coupled Z' is motivated by fine-tuning arguments and may still be found among the backgrounds at the LHC
- The measurements of the Higgs mass and couplings can provide hints of BSM physics. We are defining the regions of parameter space which can accommodate the measured signal strengths.
- A rigorous combination of Z' and Higgs constraints would be powerful and will be my next step