Lepton g-2: Standard Model vs Measurements

Massimo Passera Università e INFN Padova

University of Southampton - November 17th 2006

The present experimental values:

a_e = 1159652180.85 (76) x 10⁻¹²

0.7 parts per billion !! Odom et al., PRL97 (2006) 030801

a_μ = 116592080 (63) x 10⁻¹¹

0.5 parts per million !! E821 - Final Report: PRD73 (2006) 072003

$a_{\tau} = -0.018$ (17)

DELPHI at LEP2 - EPJC35 (2004) 159

• The Dirac theory predicts for a lepton l=e, μ , τ :

$$\vec{\mu}_l = g_l \left(\frac{e}{2m_l c}\right) \vec{s} \qquad g_l = 2$$

• QFT predicts deviations from the Dirac value:

$$g_l = 2\left(1 + a_l\right)$$

Study the photon-lepton vertex:

$$\bar{u}(p')\Gamma_{\mu}u(p) = \bar{u}(p')\Big[\gamma_{\mu}F_{1}(q^{2}) + \frac{i\sigma_{\mu\nu}q^{\nu}}{2m}F_{2}(q^{2}) + \dots\Big]u(p)$$
$$F_{1}(0) = 1 \qquad F_{2}(0) = a_{l}$$

The muon g-2

M. Passera - SHEP - 17.11.06

E821 Homepage

 $a_{\mu}^{\text{ EXP}}$ = (116592080 \pm 54 $_{\text{stat}}$ \pm 33 $_{\text{sys}}$) \times 10^{-11}

The QED contribution to a_{μ}

 $a_{\mu}^{QED} = (1/2)(\alpha/\pi)$

Schwinger 1948

+ 0.765857410 (27) (α/π)²

Sommerfield; Petermann; Suura & Wichmann '57; Elend '66; MP '04

+ 24.05050964 (43) $(\alpha/\pi)^3$

Barbieri, Laporta, Remiddi, ... , Czarnecki, Skrzypek, MP '04

+ 663 (20) $(\alpha/\pi)^5$ In progress Kinoshita et al. '90, Yelkhovsky, Milstein, Starshenko, Laporta, Karshenboim,..., Kataev, Kinoshita & Nio March '06.

Adding up, I get:

The Electroweak contribution to a_{μ}

1972: Jackiv, Weinberg; Bars, Yoshimura; Altarelli, Cabibbo, Maiani; Bardeen, Gastmans, Lautrup; Fujikawa, Lee, Sanda.

One-Loop plus Higher-Order Terms:

a_µ^{EW} = 154 (2) (<u>1</u>) × 10⁻¹¹ Higgs mass, M_top error, three-loop nonleading logs Kukhto et al. '92; Czarnecki, Krause & Marciano '95; Knecht, Peris, Perrottet & de Rafael '02; Czarnecki, Marciano & Vainshtein '02; Degrassi & Giudice '98; Heinemeyer, Stockinger & Weiglein '04; Gribouk & Czarnecki '05; Vainshtein '03.

Hadronic loop uncertainties:

a_{μ} : leading hadronic contribution

 a_{μ} : leading hadronic contribution - ii

Data from e⁺ e⁻ (Energy scan and ISR)

 $a_{\mu}^{HLO} = 6909 (39)_{exp} (19)_{rad} (7)_{qcd} \times 10^{-11}$ S. Eidelman, ICHEP 06, July 06 (DEHZ 06)

- = $6934 (53)_{exp} (35)_{rad} \times 10^{-11}$ A. Hoecker, ICHEP 04, hep-ph/0410081 (DEHZ 04)
- $= 6921 (56) \times 10^{-11}$ F. Jegerlehner, hep-ph/0608329
- = $6944 (48)_{exp} (10)_{rad} \times 10^{-11}$ de Troconiz, Yndurain, PRD71 (2005) 73008
- = 6894 (42)_{exp} (18)_{rad} × 10⁻¹¹ Hagiwara, Martin, Nomura, Teubner, hep-ph/0611102
- Radiative Corrections (Luminosity, ISR, Vacuum Polarization, **FSR**) are a very delicate issue! All under control?
- CMD2's new (1998) $\pi^+\pi^-$ data presented at EPS 2005 and at Novosibirsk '06 agree well with their earlier (1995) ones.
- SND's $\pi^+\pi^-$ data released in 2005 have been reanalyzed (RC fixed, σ decreased - see hep-ex/0605013). There is now good agreement with the $\pi^+\pi^-$ data of CMD2.

 a_{μ} : leading hadronic contribution - iii

- RADIATIVE RETURN: KLOE & BABAR. The collider operates at fixed energy but s_{π} can vary continuously. It is an important independent method!
- Some discrepancies between KLOE's and CMD2's results, even if their contributions to a_{μ}^{HLO} are similar (see table).
- SND's JETP101 (2005) 1053 data were significantly higher than KLOE's ones above the ρ peak, but they then decreased.
- Comparison in the range $s_{\pi} \in [0.37, 0.93]$ GeV²:

$$\begin{split} &a_{\mu}^{\ \pi\pi} = (3786 \pm 27_{stat} \pm 23_{sys+th}) \times 10^{-11} \quad \mbox{CMD2 (95)} \qquad \mbox{PLB578 (2004) 285} \\ &a_{\mu}^{\ \pi\pi} = (3771 \pm 19_{stat} \pm 27_{sys+th}) \times 10^{-11} \quad \mbox{CMD2 (95+98)} \qquad \mbox{S.Eidelman, ICHEP '06} \\ &a_{\mu}^{\ \pi\pi} = (3756 \pm 8_{stat} \pm 48_{sys+th}) \times 10^{-11} \quad \mbox{KLOE} \qquad \mbox{G.Venanzoni, ICHEP '04} \\ &a_{\mu}^{\ \pi\pi} = (3768 \pm 13_{stat} \pm 47_{sys+th}) \times 10^{-11} \quad \mbox{SND (revised)} \quad \mbox{S.Eidelman, ICHEP '06} \end{split}$$

 a_{μ} : leading hadronic contribution - iv

• Tau Data (ALEPH, CLEO, OPAL and BELLE)

- The tau data of ALEPH and CLEO are significantly higher than CMD2 e+e- ones above ~ 0.85 GeV. KLOE confirms this discrepancy with the tau data.
- In the same region, SND no longer agrees with ALEPH.
- The preliminary tau results of BELLE seem to be in better agreement with e+e- data.
- Latest value (Davier, Eidelman, Hoecker & Zhang, EPJC31 (2003) 503):

 a_{μ}^{HLO} = 7110 (58) x 10⁻¹¹

- Inconsistencies in the e⁺e⁻ or tau data? Are all possible isospin-breaking effects properly taken into account?? (Marciano & Sirlin '88; Cirigliano, Ecker & Neufeld '01-02, Flores-Baez et al. '06).
- Help from Lattice calculations??

a_{μ} : leading hadronic contribution - v

M. Fujikawa, TAU 06, September '06

A. Denig, Lepton Moments 06, June '06

a_u: leading hadronic contribution - vi

M. Davier at TAU06, Pisa, September '06

a_{μ} : higher-order hadronic contributions

Vacuum Polarization

 $O(\alpha^3)$ contribution of diagrams containing hadronic vacuum polarization insertions:

 $a_{\mu}^{HHO}(vp) = -98 (1) \times 10^{-11}$

Krause '96, Alemany et al. '98, Hagiwara et al. '03,'06 Shifts by $\sim -3 \times 10^{-11}$ if tau data are used instead of the e⁺e⁻ ones Davier & Marciano '04

Light-by-Light

The contribution of the hadronic I-b-I diagrams had a troubled life. The latest values vary between:

 $a_{\mu}^{HHO}(IbI) = +80 (40) \times 10^{-11}$ Knecht & Nyffeler '02 $a_{\mu}^{HHO}(IbI) = +136 (25) \times 10^{-11}$ Melnikov & Vainshtein '03

based on Hayakawa & Kinoshita '98 & '02; Bijnens, Pallante and Prades '96 & '02; Knecht, Nyffeler, Perrottet & de Rafael '02.

This may become the ultimate limitation of the SM prediction.

a_u: Standard Model vs. Experiment

Adding up all the above contribution we get the following SM predictions for a_u and comparisons with the measured value:

$a_{\mu}^{\rm SM} imes 10^{11}$	$(a_\mu^{\scriptscriptstyle \mathrm{EXP}}-a_\mu^{\scriptscriptstyle \mathrm{SM}}) imes 10^{11}$	σ		HLO Reference
116591763 (60)	317 (87)	3.7	$\langle 3.2 angle$	[1] (e^+e^-)
116591775 (69)	305 (93)	3.3	$\langle 2.8 angle$	[2] (e^+e^-)
116591798 (63)	282 (89)	3.2	$\langle 2.7 \rangle$	[3] (e^+e^-)
116591748 (61)	332 (88)	3.8	$\langle 3.4 angle$	[4] (e^+e^-)
116591961 (70)	119 (95)	1.3	$\langle 0.7 \rangle$	[5] (au)

 a_{μ}^{HHO} (lbl) = 80 (40) × 10⁻¹¹ except angle brackets.

→ a_u^{HHO}(lbl) = 136 (25) × 10⁻¹¹

- [1] S. Eidelman @ICHEP06 July 2006 (DEHZ06, update of DEHZ03, ref. [5]).
- [2] F. Jegerlehner, hep-ph/0608329, August 2006.
- [3] J.F. de Troconiz and F.J. Yndurain, PRD71 (2005) 073008.
- [4] Hagiwara, Martin, Nomura & Teubner, hep-ph/0611102, November 2006.
- [5] Davier, Eidelman, Hoecker and Zhang, EPJC31 (2003) 503.

The th. error is now the same (or even smaller) as the exp. one!

The future of a_{μ} ?

The electron g-2

The electron g-2...

a sm	$= (1/2)(\alpha/\pi) - 0.328 478 444 002 90(60) (\alpha/\pi)^2$	
	Schwinger 1948 Sommerfield; Petermann; Suura & Wichmann '57; Elend '66; MP '0	6
	$A_2^{(4)}$ (m _e /m _µ) = 5.197 386 70 (28) x 10 ⁻⁷	
	$A_2^{(4)}$ (m _e /m _t) = 1.837 62 (60) × 10 ⁻⁹	
	+ 1.181 234 016 827 (19) $(\alpha/\pi)^3$	
	Kinoshita, Barbieri, Laporta, Remiddi, , Li, Samuel: Mohr & Taylor '05; MP '06	$\overline{(\mathcal{A},\mathcal{A})}$
	$A_2^{(6)}(m_e/m_\mu) = -7.373\ 941\ 64\ (29) \times 10^{-6}$	
	$A_2^{(6)}(m_e/m_\tau) = -6.5819(19) \times 10^{-8}$	
	$A_3^{(6)}(m_e/m_{\mu}, m_e/m_{\tau}) = 1.909 45 (62) \times 10^{-13}$	
	- 1.7283 (35) (α/π) ⁴ Kinoshita & Lindquist '81,, Kinoshita & Nio July '05.	
(m)	+ 0.0 (3.8) $(\alpha/\pi)^5$ In progress (12672 diagrams!)	(aa)
	Mohr & Taylor '05; Kinoshita & Nio, in progress.	
	+ 1.671 (19) × 10 ⁻¹² Hadronic Mohr & Taylor '05: Davier & Hoecker '98 Krause '97 Knecht '03	
	+ 0.0297 (5) x 10 ⁻¹² Electroweak	
	Mohr & Taylor '05; Czarnecki, Krause, Marciano '96	

... and the best determination of alpha

• The new measurement of the electron g-2 is: $a_e^{exp} = 1159652180.85 (76) \times 10^{-12}$ Odom et al, PRL97 (2006) 030801 vs. old (factor of 6 improvement, 1.7σ difference): $a_e^{exp} = 1159652188.3 (4.2) \times 10^{-12}$ Van Dyck et al, PRL59 (1987) 26 Equating $a_e^{SM}(\alpha) = a_e^{exp} \rightarrow$ best determination of alpha to date: $\alpha^{-1} = 137.035 999 709 (12)(30)(2)(90) [0.7ppb]$ Gabrielse et al, '06; MP '06 $\delta C_4^{qed} = \delta C_5^{qed} \delta a_e^{had} = \delta a_e^{exp}$

• Compare it with other determinations:

 $\begin{array}{c} \alpha^{-1} = 137.036\ 000\ 00 & (110) \\ \alpha^{-1} = 137.035\ 998\ 78 & (91) & [6.7\ ppb] \\ \end{array} \begin{array}{c} \mathsf{PRA73}\ (2006)\ 032504\ (\mathcal{Cs}) \\ \mathsf{PRL96}\ (2006)\ 033001\ (\mathsf{Rb}) \end{array} \end{array}$

between 0.3 and 1 σ \rightarrow beautiful test of QED at 4-loop level! Old values were:

 α^{-1} = 137.035 998 83 (50) [3.6 ppb] CODATA '98 based on UW '87 α^{-1} = 137.035 999 11 (46) [3.3 ppb] CODATA '02 = PDG'04 = PDG '06

Old and new determinations of alpha

Gabrielse, Hanneke, Kinoshita, Nio & Odom, PRL97 (2006) 030802

The g-2 of the tau

The QED contribution to a_{τ}

• $a_{\tau}^{\text{QED}} = (1/2)(\alpha/\pi) + 2.057 457 (93) (\alpha/\pi)^2$ Schwinger 1948 Sommerfield; Petermann; Suura & Wi

Sommerfield; Petermann; Suura & Wichmann '57; Elend '66; Samuel, Li & Mendel '91; Narison '01; MP '06

$$A_1^{(4)} = -0.328 \ 478 \ 965 \ 579...$$

$$A_2^{(4)} (m_\tau/m_e) = 2.024 \ 284 \ (55)$$

$$A_2^{(4)} (m_\tau/m_\mu) = 0.361 \ 652 \ (38)$$

+ 57.9315 (27) (α/π)³

Kinoshita, Barbieri, Laporta, Remiddi, ... ; Samuel, Li & Mendel '91; Narison '01; MP '06

$$\begin{array}{l} A_1^{(6)} &= 1.181\ 241\ 456\ 587... \\ A_2^{(6)}(m_{\tau}/m_e) &= 46.3921\ (15) \\ A_2^{(6)}(m_{\tau}/m_{\mu}) &= 7.01021\ (76) \\ A_3^{(6)}(m_{\tau}/m_e, m_{\tau}/m_{\mu}) &= 3.347\ 97\ (41) \end{array} \right\} \begin{array}{l} \text{New} \\ \text{(hep-ph/0606174)} \end{array}$$

+ ? (??) $(\alpha/\pi)^4$ Who? When??

Adding up _____

a_τQED = 117324 (2) × 10⁻⁸ 2×10⁻⁸: estimate of missing 4-loop [α 1/137.035999709 (96)]

M. Passera - SHEP - 17.11.06

The EW and Hadronic corrections to a_{τ} (are large)

EW (1- and 2-loop) corrections

$$a_{\tau}^{\text{EW}}(1-\text{loop}) = \frac{5G_{\mu}m_{\tau}^{2}}{24\sqrt{2}\pi^{2}} \left[1 + \frac{1}{5} \left(1 - 4\sin^{2}\theta_{W} \right)^{2} + O\left(\frac{m_{\tau}^{2}}{M_{Z,W,H}^{2}} \right) \right] = 55.1 (1) \times 10^{-8}$$

Studenikin '90, included Higgs mass (and τ mass error)

$$a_{\tau}^{\text{EW}}(1-\text{loop}) = 55.09 \times 10^{-8}$$

$$a_{\tau}^{\text{EW}}(2-\text{loop frm}) = -4.68 \times 10^{-8}$$

$$a_{\tau}^{\text{EW}}(2-\text{loop bos}) = -3.06 \times 10^{-8} \right\} \qquad a_{\tau}^{\text{EW}} = 47.4 (5)(2) \times 10^{-8}$$
 New
Higgs mass, Hadronic loop uncertainties,
M_top error Missing 3-loop contributions

Marciano '95; Czarnecki & Krause '97; Narison '01; Eidelman, Giacomini, Ignatov & MP '06

Hadronic corrections:

$$a_{\tau}^{HLO} = 360 (30)(10) \times 10^{-8}$$

 $a_{\tau}^{HLO} = 343.3 (9.1) \times 10^{-8}$
 $a_{\tau}^{HLO} = 353.6 (4.0) \times 10^{-8}$
 $a_{\tau}^{HLO} = 351.7 (3.9) \times 10^{-8}$
 $a_{\tau}^{HHO} (vac) = 7.6(2) \times 10^{-8}$
 $a_{\tau}^{HHO} (lbl) = 38 (7) \times 10^{-8}$

Samuel, Li & Mendel '91 Eidelman & Jegerlehner '95 Narison 2001 Eidelman, Giacomini, Ignatov & MP '06, preliminary Krause '96 Rescaling of a_µ^{HHO}(IbI) of Melnikov&Vainshtein Adding up, we get the complete Standard Model prediction:

$$a_{\tau}^{SM}$$
 = 117324 (2) x 10⁻⁸ QED
+ 47.4 (0.5) x 10⁻⁸ EW
+ 351.7 (3.9) x 10⁻⁸ HLO
+ 46 (7) x 10⁻⁸ HHO

$$a_{\tau}^{SM} = 117769 (8) \times 10^{-8}$$

	Muon	Tau
a ^{EW} /a ^{HAD}	1/45	1/8
a ^{EW} /δa ^{HAD}	3	6

• $(m_{\tau}/m_{\mu})^2 \sim 280$: great opportunity to look for New Physics... ...if only we could measure it!

Conclusions

- Beautiful examples of interplay between theory and experiment: g_e probed at <ppt! $\rightarrow \alpha$ and extraordinary test of QED's validity; g_{μ} probed at <ppb \rightarrow test of the full SM and "New Physics"; g_{τ} well... theory is ahead of experiment! Great NP sensitivity.
- a_{μ} : The discrepancy $\Delta(Exp-SM)$ is more than 3 σ , if e^+e^- data are used (recent CMD2 and SND results are already included!).
- a_{μ} : With tau data, $\Delta(Exp-SM) \sim 1 \sigma$ only! The e⁺e⁻ vs tau puzzle is still unsolved. Unaccounted isospin viol. corrections? Problems in the e⁺e⁻ or τ data? Revised SND no longer agrees with Aleph; Preliminary Belle's τ data seem to be in better agreement with e⁺e⁻. More work and data needed from KLOE, Babar, Belle...

• Future: Further improvements in a_e^{EXP} ? Possibilities for a_{τ}^{EXP} ?? a_{μ} : QED and EW sectors ready for E969 challenge! Hadronic sector needs more work and future exp. results: VEPP-2000 (DAFNE-2?). An improvement by a factor of 2 is challenging but possible! The effort is certainly worth the opportunity a_{μ} is providing us to unveil (or just constrain) "New Physics" effects!

The End

The effective fine-structure constant at the scale s is given by:

$$\alpha(s) = rac{lpha}{1 - \Delta lpha}$$
 with

The light quarks part is determined by:

$$\Delta \alpha_{had}^{(5)}(M_z^2) = -\frac{\alpha M_z^2}{3\pi} \int_{s_{thr}}^{\infty} ds \frac{R(s)}{s(s - M_z^2 - i\epsilon)}.$$

Progress due to significant improvement of the data (mostly CMD-2 and BES):

 $\Delta \alpha_{had}^{(5)} (M_z^2) =$

0.02800 (70) 0.02761 (36) 0.02755 (23) 0.02758 (35) Eidelman, Jegerlehner'95 Burkhardt, Pietrzyk 2001 Hagivara et al., 2004 Burkhardt, Pietrzyk 6-05

$$\Delta \alpha = \Delta \alpha_{lep} + \Delta \alpha_{had}^{(5)} + \Delta \alpha_{top}$$

Hagivara et al., PRD69 (2004) 093003