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0. INTRODUCTION TO INFLATION

A. PROBLEMS OF STANDARD BIG BANG COSMOLOGY

• THE FLATNESS PROBLEM • THE HORIZON PROBLEM
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(b)WE HAVE ln |Ω−1| ∝ 6τι[4τι] FOR RD [MD] BUT ln |Ω−1| ∝

−2τι FOR VD. NOTE THAT H ∝ R−2[R−3/2] FOR RD [MD]
BUT H =CST FOR VD.

A LENGHT λ = 2πR/k IS INSIDE [OUTSIDE] THE HORIZON

1/ WHEN λ < 1/H ⇔ k > RH [λ > 1/H ⇔ k <
RH ]. IN ORDER TO RESOLVE THE HORIZON PROBLEM WE

NEED d(λH)/dt > 0 ⇔ R̈ > 0 (NOTE THAT λ ∝ R).

B. INFLATION AND THE INFLATON

FROM THE EQUATIONS OF THE COSMOLOGICAL EVOLUTION, WE DEDUCE THAT ACCELERATION OF TH UNIVERSE MEANS:

R̈

R
= (1 − ε)H2 = − 1

6mP

(1 + 3w)ρ > 0 ⇔
{

ε < 1 WHERE ε = −Ḣ/H2,
w < −1/3 WHERE w = P/ρ.
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SINCE THE DENSITY ρφ AND THE PRESSURE Pφ OF A OMOGENOUS SCALAR FIELD φ(t) ARE:

ρφ =
1

2
φ̇2 + V (φ) AND Pφ =

1

2
φ̇2 − V (φ) WE CAN OBTAIN Pφ = −ρφ (w = −1) IF φ̇ � V (φ).

OR H2 = ρφ/3m2
P = cst. AS A CONSEQUENCE R(t) = Rie

∆Ne WHILE T (t) = Tie
−∆Ne WHERE ∆Ne = H(t − ti) IS THE

NUMBER OF e-FOLDINGS DURING INFLATION FOR t > ti.
IF IN ADDITION WE HAVE φ̇ � φ̈ ⇔ η < 1, WHERE η = m2

Pd2V (φ)/dφ2/V WE OBTAIN “SLOW ROLL” INFLATION AND THE

EQUATION OF MOTION (: EOM) OF φ:

φ̈ + 3Hφ̇ + dV (φ)/dφ = 0 CAN BE WRITTEN AS − 3Hφ̇ = dV (φ)/dφ.

C. PRIMORDIAL CURVATURE PERTURBATIONS
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EXPANDING IN FOURIER SERIES THE PERTURBATIONS δφ(x, t)
OF φ, δφ(x, t) = φ(x, t) − φ(t),

δφ(x, t) =

∫

d3
k

(2π)3/2
eikx δφk(t),

WE OBTAIN A POWER SPECTRUM OF THE MODE δφk,

P
1/2
φ = (k3/2π)1/2δφk(k = RH) WHICH RESULTS TO A

POWER SPECTRUM OF CURVATURE PERTURBATIONS P
1/2
R =

H2/φ̇P
1/2
φ . THIS IS RELATED TO THE QUADRIPOLE ANISOTROPY

∆T/T OF CMB MEASURED BY WMAP.
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I. MOTIVATION

A. WMAP3 AND FHI
FITTING THE WMAP3 DATA WITH THE STANDARD POWER-LAW COSMOLOGICAL MODEL ΛCDM, ONE OBTAINS1 THAT, AT THE

PIVOT SCALE k∗ = 0.002/Mpc,

ns = 0.958 ± 0.016 ⇒ 0.926 . ns . 0.99 (95% C.L.)

THESE RESULTS BRING UNDER CONSIDERABLE STRESS A CLASS OF SUSY MODELS OF FHI, REALIZED AT (OR VERY CLOSE TO)
MGUT = 2.86× 1016 GeV WHICH PREDICTS (FOR Ntot = NHI∗ = 50)2:

ns ∼ 0.98 OR EVEN ns ∼ 1,

IF SUGRA CORRECTIONS (WITH CANONINAL KÄHLER POTENTIAL) ARE INCLUDED3 .

B. PROPOSED SOLUTIONS

• UTILIZATION OF A QUASI-CANONINAL KÄHLER POTENTIAL WHICH CAN GENERATE A MAXIMUM ON THE INFLATIONARY PATH

(HILLTOP INFLATION). INDISPENSABLE TUNING OF THE INITIAL CONDITIONS (∼ 0.01) IS NEEDED4 .

• INCLUSION OF A SMALL CONTRIBUTION TO PR FROM COSMIC STRINGS, WHICH, HOWEVER, REQUIRES M � MGUT
5.

C. COMPLEMENTARY INFLATION

OUR PROPOSAL IS BASED ON THE OBSERVATION THAT nS WITHIN FHI GENERALLY DECREASES WITH THE NUMBER OF e-
FOLDINGS, NHI∗ , THAT k∗ SUFFERED DURING FHI: E.G., FOR ST-FHI WITH SUPERPOTENTIAL W = κS

(

Φ̄Φ − M2
)

(SEE BELOW):

1D.N. Spergel et al. (2006)
2G.R. Dvali, Q. Shafi, and R.K. Schaefer (1994); G. Lazarides, R.K. Schaefer, and Q. Shafi (1997).
3V.N. Şenoğuz and Q. Shafi (2003).
4L. Boubekeur and D. Lyth (2005); M. Bastero-Gil, S.F. King, and Q. Shafi (2006); B. Garbrecht, C. P., and A. Pilaftsis (2006);

M.U. Rehman, V.N. Şenoğuz, and Q. Shafi (2006).
5R.A. Battye, B. Garbrecht, and A. Moss (2006); R. Jeannerot and M. Postma (2005); J. Rocher and M. Sakellariadou (2005).
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WE OBSERVE THAT FOR RELATIVELY LARGE κ (' 0.01, 0.1)
AND NHI∗ ∼ (15 − 20) WE CAN OBTAIN ns ' 0.96. THE

RESIDUAL NUMBER OF e-FOLDINGS Ntot−NHI∗ (REQUIRED FOR

THE RESOLUTION OF THE HORIZON AND FLATNESS PROBLEMS

OF SBB) CAN BE OBTAINED BY A SECOND STAGE OF INFLATION

REALIZED AT A LOWER SCALE.WE CALL THIS TYPE OF INFLA-
TION COMPLEMENTARY INFLATION. WE CAN SHOW THAT MI CAN

NATURALLY PLAY THIS ROLE.

II. MODELS OF FHI

A. THE RELEVANT SUPERPOTENTIAL

THE FHI CAN BE REALIZED ADOPTING ONE OF THE SUPERPOTENTIALS6 78:

W =











κS
(

Φ̄Φ − M2
)

FOR STANDARD FHI (: ST-FHI),

κS
(

Φ̄Φ − M2
)

− S (Φ̄Φ)2

M2

S

FOR SHIFTED FHI (: SH-FHI),

S
(

(Φ̄Φ)2

M2

S

− µ2
S

)

FOR SMOOTH FHI (: SM-FHI),

WHERE:

6sm-FHI: G.R. Dvali, Q. Shafi, and R.K. Schaefer (1994)
7sh-FHI: R. Jeannerot, S. Khalil, G. Lazarides and Q. Shafi (2000)
8sm-FHI: G. Lazarides and C. Panagiotakopoulos (1995); R. Jeannerot, S. Khalil, and G. Lazarides (2001)
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• Φ̄ AND Φ: PAIR OF LEFT HANDED SUPERFIELDS BELONGING TO NON-TRIVIAL CONJUGATE REPS OF A GAUGE GROUP G AND

REDUCING ITS RANK BY THEIR VEVS (WATERFALL FIELDS),

• MS ∼ 5 × 1017 GeV: THE STRING SCALE,

• κ AND M, µS (∼ MGUT): POSITIVE PARAMETERS.

W �











RENORMALIZABLE TERMS CONSISTENT WITH

U(1)R : S → eiα S, Φ̄Φ → Φ̄Φ, W → eiα W FOR ST-FHI,
LEADING NON-RENORMALIZABLE TERM FOR SH-FHI,
Z2 INVARIANT TERMS UNDER WHICH Φ → −Φ FOR SM-FHI.

B. THE SUSY POTENTIAL

1. DERIVATION

THE SUSY POTENTIAL INCLUDES 2 CONTRIBUTIONS: VSUSY = VF + VD, WHERE

• D-TERM CONTRIBUTION: VD = 0, WITH |Φ̄| = |Φ|.

• F-TERM CONTRIBUTION: VF =







κ2M4
(

(Φ̄2 − 1)2 + 2S̄2Φ̄2
)

FOR ST-FHI,

κ2M4
(

(Φ̄2 − 1 − ξΦ̄4)2 + 2S̄2Φ̄2(1 − 2ξΦ̄2)2
)

FOR SH-FHI,

µ4
S

(

(1 − Φ̄4)2 + 16S̄2Φ̄6
)

FOR SM-FHI,

WHERE:

{

Φ̄ = |Φ|/M AND S̄ = |S|/M FOR ST- OR SH-FHI ,
Φ̄ = |Φ|/2

√
µSMS AND S̄ = |S|/

√
2µSMS FOR SM-FHI,

AND ξ = M2/κMS WITH 1/7.2 < ξ < 1/4 9.

2. STRUCTURE

9R. Jeannerot et al. (2000)
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• W LEADS TO THE SSB OF G, SINCE THE SUSY VACUUM IS:

〈S〉 = 0 AND |〈Φ̄〉| = |〈Φ〉| = v
G

WITH v
G

=







M FOR ST-FHI,
M√
2ξ

√

1 −
√

1 − 4ξ FOR SH-FHI,√
µSMS FOR SM-FHI.

• W ALSO GIVES RISE TO FHI SINCE THERE ARE:

F-FLAT DIRECTION(S) (VF = cst):















Φ̄ = 0 G IS RESTORED FOR ST-FHI,
(TOPOLOGICAL DEFECTS MAY BE PRODUCED)
Φ̄ = 0 OR Φ̄ =

√

1/2ξ FOR SH-FHI,

Φ̄ = 0 OR Φ̄ = 1/2
√

6S̄ FOR SM-FHI.

3. PICTORIAL REPRESENTATION

• ST-FHI (: STANDARD FHI) • SH-FHI (: SHIFTED FHI)
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• SM-FHI (: SMOOTH FHI)
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4. COMPARISONS

IN THE CASES OF ST-FHI AND SH-FHI:

• THE Φ̄ = 0-DIRECTION IS A MINIMUM OF VSUSY FOR

|S| LARGE.

• THE INFLATIONARY VALLEYS ARE CLASSICALLY FLAT.

• THERE IS A CRITICAL POINT ALONG THE INFLATIONARY

VALLEYS.

IN THE CASE OF SM-FHI:

• THE Φ̄ = 0-DIRECTION IS A MAXIMUM OF VSUSY .

• THE INFLATIONARY VALLEYS ARE NOT CLASSICALLY

FLAT.

• THERE IS NO CRITICAL POINT ALONG THE INFLATION-
ARY VALLEYS
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C. THE INFLATIONARY POTENTIAL

THE INFLATIONARY POTENTIAL CAN BE WRITTEN AS: VHI = VHI0 + VHIc + VHIS, WHERE:

• VHI0 : THE DOMINANT CONTRIBUTION TO VHI ALONG THE F-FLAT DIRECTION,

VHI0 =







κ2M4 FOR ST-FHI,
κ2M4

ξ FOR SH-FHI

µ4
S FOR SM-FHI.

(Mξ = M
√

1/4ξ − 1),

• VHIc : CORRECTIONS TO VHI0 WHICH GENERATE THE SLOPE ALONG THE FLAT DIRECTION WHICH IS NECESSARY FOR DRIVING

σ = |S|/
√

2 TOWARDS THE VACUA. VHI0 > 0 BREAKS SUSY AND GIVES RISE TO LOGARITHMIC RCS TO VHI. IN THE CASE

OF SM-FHI, THE INFLATIONARY VALLEYS ARE NOT CLASSICALLY FLAT AND, THUS, THERE IS NO NEED OF RCS.

VHIc =















κ4M4
N

32π2

(

2 ln κ2xM2

Q2 + fc(x)
)

, x = σ2

M2 FOR ST-FHI,

κ4M4

ξ

16π2

(

2 ln
κ2xξM2

ξ

Q2 + fc(xξ)
)

, xξ = σ2

M2

ξ

FOR SH-FHI,

−2µ6
sM

2
S/27σ4 FOR SM-FHI,

WHERE fc(x) = (x + 1)2 ln(1 + x−1)+(x − 1)2 ln(1 − x−1)

AND N THE DIMENSIONALITY OF THE REPS TO WHICH Φ̄ AND Φ BELONG AND Q A RN SCALE.

• VHIS : SUGRA CORRECTIONS TO VHI ASSUMING MINIMAL KÄHLER POTENTIAL,

VHIS = VHI0
σ4

8m4
P

, WHERE mP ' 2.44 × 1018 GeV.

D. THE INFLATIONARY OBSERVABLES

UNDER THE ASSUMPTION THAT THE COSMOLOGICAL SCALES LEAVE THE HORIZON DURING FHI AND ARE NOT REPROCESSED

DURING MI, WE CAN EXTRACT:
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• THE NUMBER OF e-FOLDINGS NHI∗ THAT k∗ SUFFERED DURING FHI,

NHI∗ =
1

m2
P

∫ σ∗

σf

dσ
VHI

V ′
HI

, WHERE
′ : d/dσ AND

– σ∗: THE VALUE OF σ WHEN THE SCALE k∗ CROSSED OUTSIDE THE HORIZON OF FHI,

– σf : THE VALUE OF σ AT THE END OF FHI, WHICH CAN BE FOUND, IN THE SLOW ROLL APPROXIMATION, FROM THE

CONDITION:

max{ε(σf), |η(σf)|} = 1, WITH ε ' m2
P

2

(

V ′
HI

VHI

)2

AND η ' m2
P

V ′′
HI

VHI

·

HOWEVER, σf '
{

σc = M/
√

2 FOR ST-FHI,
σc = M FOR SH-FHI.

• THE POWER SPECTRUM PR∗ OF THE CURVATURE PERTURBATIONS AT THE PIVOT SCALE k∗,

P
1/2
R∗ =

1

2
√

3πm3
P

V
3/2
HI

|V ′
HI|

∣

∣

∣

∣

∣

σ=σ∗

·

• THE SPECTRAL INDEX ns AND ITS RUNNING αs,

ns = 1 +
d lnPR

d ln k

∣

∣

∣

∣

σ=σ∗

= 1 − m2
P

V ′
HI

VHI

(lnPR)′
∣

∣

∣

∣

σ=σ∗

= 1 − 6ε(σ∗) + 2η(σ∗),

AND αs =
d2 ln PR

d ln k2

∣

∣

∣

∣

σ=σ∗

= 2
(

4η(σ∗)
2 − (ns − 1

)2
)/3 − 2ξ(σ∗) WITH ξ ' m4

P V ′
HIV

′′′
HI/V

2
HI
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III. BASICS OF MODULAR INFLATION

A. THE INFLATIONARY POTENTIAL

THE RELEVANT FOR MI PART OF THE POTENTIAL HAS THE FORM10 :

VMI = VMI0 −
1

2
m2

ss
2 + · · · , WITH:

• s: THE CANONICALLY NORMALIZED STRING AXION WITH

MASS ms ∼ m3/2 ∼ 1 TeV WHERE m3/2 IS THE GRAV-
ITINO MASS,

• VMI0 = vs(m3/2mP)2 ⇒ V
1/4
MI0 ' 3×1010 GeV (vs ∼

1). THEREFORE, THE CONTRIBUTION OF MI TO PR IS

NEGLIGIBLE SINCE VMI0 � VHI0 . 0.0 0.2 0.4 0.6 0.8 1 .0 1 .2 1 .4 1 .6 1 .8
0.6

0.7

0.8

0.9

1 .0

1 .1

1 .2
VMI /  ( msmP)

2 =  1  -  ( s / mP )2 +  0 . 2  ( s / mP )4 

 

V M
I / 
(m

sm
P)2

s / mP
B. DYNAMICS OF THE STRING AXION

THE SOLUTION OF THE EOM OF s: s̈ + 3Hs − m2s = 0, IS s = sie
FsHt WHERE Fs =

√

9

4
+

(ms

H

)2

− 3

2
,

• si: THE INITIAL VALUE OF s AND

• H : THE HUBBLE PARAMETER WHICH IS:

– DURING FHI, H = HHI0 =
√

VHI0/
√

3mP ∼ (1010 − 1012) GeV � ms. THEREFORE, s REMAINS PRACTICALLY

FROZEN. NOTE THAT VMI REMAINS UNALTERED DURING FHI (AND THE MD ERA AFTER HI) SINCE s IS A PHEUDO NAMBU

GOLDSTONE BOSON (IT HAS NO K AND W )11 .

– DURING FHI, H = Hs '
√

VMI0/
√

3mP = ms

√

vs/3 ∼ ms.
FOR NATURAL MI WE NEED: (VMI > 0 )0.5 ≤ vs ≤ 10 ⇒ 2.45 ≥ ms/Hs ≥ 0.55 ⇒ 1.37 ≥ Fs ≥ 0.097.

10P. Binétruy and M.K. Gaillard (1986); F.C. Adams et al. (1993).
11M. Dine, L. Randall, and S. Thomas (1995); E.J. Chun, K. Dimopoulos and D.H. Lyth (2004).
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C. TYPES OF MI
INFLATION CAN BE NOT ONLY OF THE SLOW-ROLL BUT ALSO OF THE FAST-ROLL TYPE SINCE12 :

|ηs| = m2
P

d2VMI/ds2

VMI

=
m2

s

3H2
s

'
√

1

vs

⇒
{

ms/Hs <
√

3 OR vs > 1 SLOW-ROLL MI,
ms/Hs >

√
3 OR vs < 1 FAST-ROLL MI,

BUT

εs = − Ḣs

H2
s

= F 2
s

s2

2m2
P

∈ [0.005, 0.94] ⇒ εs < 1 FOR 0.55 ≤ ms/Hs ≤ 2.45 AND 〈s〉/mP = 1.

THEREFORE, WE OBTAIN ACCELERATED EXPANSION (:INFLATION) WITH Hs = cst. WE TAKE sf = 〈s〉 = mP,
SINCE εs = 1 ⇔ sf > mP FOR 1.37 ≥ Fs ≥ 0.097.
D. NUMBER OF e-FOLDINGS

THE TOTAL NUMBER OF e-FOLDINGS DURING MI CAN BE FOUND FROM: NMI =
1

Fs

ln
sf

si

' 1

Fs

ln

(

mP

si

)

.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2 .0 2 .2 2 .4
1

10

100
si  /  m P  =
si  /  m P  =
si  /  m P  =

Hs / 2 π

0 . 1
0 . 0 1
1 0 - 8

si  /  m P  =

 

 

N M
I

m
s
 /  H

s

WE OBSERVE THAT:

• AS si DECREASES, THE REQUIRED ms/Hs FOR OBTAIN-
ING NMI ∼ 30 INCREASES. ALSO FOR si/mP < 10−8,
WE NEED FAST-ROLL MI.

• FOR si/mP > 0.1, IT IS NOT POSSIBLE TO OBTAIN

NMI ∼ 30

12A. Linde (2001)
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III. OBSERVATIONAL CONSTRAINTS

THE COSMOLOGICAL SCENARIO UNDER CONSIDERATION NEEDS TO SATISFY A NUMBER OF CONSTRAINTS WHICH ARISE FROM:

(i) THE POWER SPECTRUM OF THE CURVATURE PERTURBATIONS: P
1/2
R∗ ' 4.86 × 10−5 AT k∗ = 0.002/Mpc.

(ii) THE LOW ENOUGH VALUE OF αs (IN ORDER TO BE CONSISTENT WITH THE POWER-LAW ΛCDM MODEL)13 : |αs| � 0.01 .
WE DISPLAY CURVES FOR αs = −0.005 AND −0.01.

(ii) THE RESOLUTION OF THE HORIZON AND FLATNESS PROBLEMS OF SBB:

Ntot = NHI∗ + NMI ' ln
H0a0

k
+ 24.72 +

2

3
ln

V
1/4
HI0

1 GeV
+

1

3
ln

TMrh

1 GeV
, AT k = k∗ = 0.002/Mpc.

WE ASSUME THAT THrh < V
1/4
MI0 AND, THUS, WE OBTAIN JUST MD DURING THE INTER-INFLATIONARY ERA (TMrh, THE REHEAT

TEMPERATURE AFTER MI).

(iii) THE HOMOGENEITY OF THE PRESENT UNIVERSE:

si � δsi|HI ' HHI0/2π AND si � δsi|MI ' HMI0/2π

WHERE HHI0 =
√

VHI0/
√

3mP AND δsi ARE THE QUANTUM FLUCTUATIONS OF s DURING FHI.

(iv) THE COMPLETE RANDOMIZATION OF THE STRING AXION AND THE BELONGING OF ALL THE VALUES OF s TO THE RANDOMIZATION

REGION WITH EQUAL PROBABILITY:
VMI0 . H4

HI0 ⇒ si/mP ∈ (0, 1).

(v) THE NATURALNESS OF MI: ms/Hs . 2.45 ⇒ NMI & 0.73 ln(mP/si) ∼ 3.3 FOR si/mP ' 0.01.

13G. Ballesteros, J.A. Casas, and J.R. Espinosa (2006)
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i = 1 / H

_

F HI M I D P DD P D

_

M DR D

i = λc

i = λ*  ln
 i

τ = ln R / R0
(b)

– τι = ln a/a0 = − ln(1 + z): THE LOGARITHMIC TIME,

– H̄ = H/H0: THE DIMENSIONLESS HUBBLE PARAME-
TER,

– R̄H = 1/H̄ : THE DIMENSIONLESS PARTICLE HORI-
ZON, ln R̄H ∝ 2τι[1.5τι] FOR RD [MD] ERA AND

ln R̄H =CST. FOR FHI OR MI,

– λ̄ = λ/a0: THE DIMENSIONLESS LENGTH SCALE,
ln λ ∝ τι,

– λ̄∗[λ̄c]: THE SCALE CORRESPONDING TO k∗ [kc].

(vi) THE REQUIREMENT THAT THE COSMOLOGICAL SCALES (WITH k < 0.1/Mpc14):

– LEAVE THE HORIZON DURING FHI NHI∗ & Ntot(k = 0.002/Mpc) − Ntot(k = 0.1/Mpc) = 3.9 AND

– DO NOT RE-ENTER THE HORIZON BEFORE THE ONSET OF MI15 NHI∗ & NHIc, WHERE:

1 =
kc

Hsas

=
Hcac

HsaHIf

aHIf

as

= e−NHIc

(

VHI0

VMI0

)1/2−1/3

⇒ NHIc =
1

6
ln

VHI0

VMI0

THEREFORE, ALL IN ALL WE HAVE: NHI∗ & Nmin
HI∗ ' 3.9 +

1

6
ln

VHI0

VMI0
∼ 10.

14U. Seljak, A. Slosar, and P. McDonald (2006).
15C.P. Burgess et al. (2005).
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IV. NUMERICAL RESULTS

WE TAKE TMrh = 1 GeV AND m3/2 = ms = 1 TeV THROUGH OUT. ALSO, WE FIX si/mP = 0.01 SINCE (I) si < 〈s〉 ' mP

AND SO, THE EXTRA TERMS OF VMI0 ARE IRRELEVANT (II) ENSURES A LARGE AVAILABLE PARAMETER SPACE FOR n = 0.958 AND

v
G
' MGUT (THIS CHOICE THOUGH SIGNALISES A VERY MILD TUNNING).

A. STANDARD-FHI
1. SET-UP

WE CONSIDER G = SU(3)c × SU(2)L × SU(2)R × U(1)B−L (N = 2).
IF Φ̄ AND Φ ARE SU(2)R DOUBLETS WITH B − L = −1, 1 RESPECTIVELY, NO COSMIC STRINGS ARE PRODUCED.
2. ALLOWED REGIONS BY ALL THE CONSTRAINTS
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FOR ns = 0.958, WE OBTAIN 0.004 . κ . 0.14, 0.79 . v
G
/1016 GeV . 1.08, − 0.002 & αs & −0.01 AND

0.64 . ms/Hs . 0.77.
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FOR ns = 0.958, WE OBTAIN 10. . NHI∗ . 21.7 AND 35 & NMI & 24.
B. SHIFTED FHI
1. SET-UP

WE ADOPT THE PATI-SALAM GAUGE GROUP G = SU(4)c × SU(2)L × SU(2)R AND FIX MS = 5 × 1017 GeV.
2. ALLOWED REGIONS

THE RESULTS ARE QUITE SIMILAR TO THESE FOR ST-FHI (THE BOUNDS ON ξ DO NOT CUT OUT ANY SLICE OF THE AVAILABLE

PARAMETER SPACE). BUT WE CAN OBTAIN v
G

= MGUT.
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FOR ns = 0.958 AND v
G

= MGUT, WE OBTAIN κ ' 0.01, NHI∗ ' 21., |αs| = 0.0018, ms/Hs ' 0.77 AND NMI ' 24.3.
B. SMOOTH FHI
1. SET-UP

WE DO NOT INCLUDE RADIATIVE CORRECTIONS INTO OUR COMPUTATION, AND SO THERE IS NO SPECIFIC GUT.
2. ALLOWED REGIONS

• IN CONTRAST TO ST-FHI AND SH-FHI, |αs| IS CONSIDERABLY ENHANCED IN THE CASE OF SM-FHI FOR v
G
∼ MGUT

• IN THE CASE OF SM-FHI, SUGRA CORRECTIONS PLAY AN IMPORTANT ROLE FOR EVERY MS IN THE ALLOWED REGION

WHEREAS THEY BECOME MORE AND MORE SIGNIFICANT AS κ INCREASES ABOVE 0.01 IN THE CASES OF ST-FHI AND SH-
FHI.

• CONTRARY TO ST-FHI AND SH-FHI, THE CONSTRAINT NHI∗ & Nmin
HI∗ DOES NOT RESTRICT THE PARAMETERS, SINCE IT IS

OVERSHADOWED BY THE CONSTRAINT OF ns ' 0.926.
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FOR ns = 0.958 AND v
G

= MGUT , MS/(5×1017 GeV) ' 0.87, NHI∗ ' 18, |αs| = 0.005, ms/Hs ' 0.72 AND NMI ' 27.8.
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V. CONCLUSIONS

WE PRESENTED TWO-STAGE INFLATIONARY MODELS IN WHICH A SUPERHEAVY SCALE FHI IS FOLLOWED BY AN INTERMEDIATE

SCALE MI. WE CONFRONTED THESE MODELS WITH THE DATA ON PR AND ns WITHIN THE POWER-LAW ΛCDM MODEL. WE SHOWED

THAT THESE RESTRICTIONS CAN BE MET, PROVIDED THAT NHI∗ IS RESTRICTED TO RATHER LOW VALUES (∼ 20). FOR CENTRAL

VALUES OF PR AND ns, WE FOUND THAT:

v
G







< MGUT AND 10. . NHI∗ . 21.7 FOR ST-FHI,
= MGUT AND NHI∗ ' 21 FOR SH-FHI,
= MGUT AND NHI∗ ' 18 FOR SM-FHI.

IN ALL CASES, MI OF THE SLOW-ROLL TYPE WITH ms/Hs ∼ 0.6− 0.8 NATURALLY PRODUCES NMI = Ntot −NHI∗ ' (20− 30).
THEREFORE, MI COMPLEMENTS SUCCESSFULLY FHI.

VI. FUTURE DIRECTIONS

• WHAT HAPPENS IF s OBTAINS A MASS TERM DURING FHI?

• WE CAN INCREASE THE REHEAT TEMPERATURE AFTER COMPLEMENTARY INFLATION?

• WE CAN REALIZE A MECHANISM OF BARYOGENESIS WITHIN THIS FRAMEWORK?

• WE CAN PRODUCE THE REQUIRED NMI = Ntot − NHI∗ ' (20 − 30) THROUGH A THERMAL INFLATION?

• ARE THERE OBSERVATIONAL CONSEQUENCES?


